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Abstract. Fluorescence confocal laser scanning microscopy (CLSM) has
revolutionized imaging of subcellular structures in biomedical research by
enabling the acquisition of 3D time-series of fluorescently-tagged proteins
in living cells, hence forming the basis for an automated quantification
of their morphological and dynamic characteristics. Due to the inher-
ently weak fluorescence, CLSM images exhibit a low SNR. We present
a novel model for the transfer of signal and noise in CLSM that is both
theoretically sound as well as corroborated by a rigorous analysis of the
pixel intensity statistics via measurement of the 3D noise power spectra,
signal-dependence and distribution. Our model provides a better fit to
the data than previously proposed models. Further, it forms the basis
for (i) the simulation of the CLSM imaging process indispensable for
the quantitative evaluation of CLSM image analysis algorithms, (ii) the
application of Poisson denoising algorithms and (iii) the reconstruction
of the fluorescence signal.

Keywords: Fluorescence microscopy, Confocal laser scanning microscopy,
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1 Introduction

4D (3D+time) live cell fluorescence imaging by means of CLSM has become a
widely used tool in cell biology for the analysis of the dynamics of subcellular
structures. To avoid phototoxicity, the excitation laser power has to be kept in
a low range. In consequence, the fluorescence signal is very weak and the SNR
is low. Fig. 1b shows a typical CLSM slice image, depicting fluorescently-labeled
keratin intermediate filaments, which are subcellular protein fibers that build an
essential part of the cytoskeleton in epithelial cells, illustrating how much CLSM
images are corrupted by noise.

Noise reduction is therefore a crucial preprocessing step to be applied before
the image analysis. To perform a sound denoising a noise model is needed. An
extended model describing signal and noise transfer in CLSM which does not only
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(a) CLSM beam path (b) Noise in CLSM data

Fig. 1. CLSM imaging: (a) Scheme of the beam path in a confocal laser scanning
microscope and (b) Noise in CLSM images: Image section showing fluorescently-labeled
keratin intermediate filaments, subcellular protein fibers, that appear in the image as
curvilinear structures. Their granular appearance is due to noise.

account for the system noise but also for the randomness of the fluorescence input
signal further enables the simulation of CLSM imaging so that synthetic images
may be generated for the quantitative evaluation of image analysis algorithms for
CLSM. Furthermore, such an extended model can serve for the reconstruction
of the fluorescence input signal. The latter is related to the concentration of
fluorescently-labeled proteins such that quantitative spatiotemporal analyses of
the protein-of-interest can be performed.

Few models have been proposed for the noise in CLSM images as well as for
the pixel intensity statistics. It is often assumed, that due to the photon-counting
process in CLSM, the noise follows a Poisson distribution [1]. Denoising meth-
ods for CLSM that rely on this assumption have been designed [2] [3]. For the
pixel intensity statistics in CLSM images, a mixture model [4] has been proposed
recently, claiming that the pixel intensity statistics follow a linear mixture of a
discrete normal distribution and a negative binomial distribution. The discrete
normal distribution serves as a model for additive electronic noise while the nega-
tive binomial distribution, also known as Gamma-Poisson distribution, accounts
for the fact that the photon-counting process at the detector described by the
Poisson model depends itself on a random variable – namely the random fluo-
rescence field after smoothing by the CLSM point-spread-function (PSF). The
distribution of the latter is approximated by a Gamma distribution by simulation
[4]. Further related work on pixel intensity statistics includes a Poisson approx-
imation to the noise of the integrating detectors [5] where the pixel intensity
statistics are modeled as two cascaded Poisson processes and a linear mapping
which accounts for the offset and gain of the analog-to-digital conversion.

We found that all of the above models did not fit well to our data (Fig. 5).
Instead of performing a simulation of the input such as is done in [4], we provide
a theoretically derived model which is substantiated by measurements of signal-
dependence, spatial-frequency-dependence and distribution of the pixel intensity
statistics.
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2 Image Formation

In fluorescence CLSM, subcellular structures are labeled with fluorescent dyes
called fluorochromes. The structure to be imaged can thus be considered as a
spatial fluorochrome distribution. A 3D image of such a specimen is acquired
as follows (Fig. 1a): A laser is focused by the optics onto a point within the
specimen (excitation beam path). Any fluorochromes present at that position
randomly emit photons in all directions. As the fluorescence emitted by an ex-
cited fluorochrome has a longer wavelength than the excitation light (Stokes’
law) the fluorescence photons are deflected at the dichroic beam splitter towards
the detector, a photomultiplier tube (PMT). To mask fluorescence that orig-
inates from structures that are out-of-focus, an aperture is placed in front of
the detector (detection beam path). By moving the focal point, the whole focal
plane is scanned point-wise yielding a 2D image which represents a section of
the specimen. This process is repeated at different depths of the 3D specimen
such that it is imaged in a stack of 2D slices forming a 3D image.

For a better understanding of the way the fluorescence signal and the noise
are transferred through the microscope system, in the following, we detail the
single pixel acquisition process, i.e. the detection beam path, as illustrated in
Fig. 2. Note that throughout the description the wavelength-dependency of the
quantities involved is not mentioned explicitly for reasons of simplicity.
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Fig. 2. Block diagram of the single pixel acquisition process in a confocal laser scanning
microscope: See main text for explanation

The emission photon flux from a single fluorescent molecule depends on the
excitation photon flux, the quantum yield of the fluorochrome and its molecular
cross-section. It gives the number of photons emitted per unit time. However,
not only a single fluorescent molecule contributes to the signal formation of
one pixel, but rather all fluorescent molecules contained in the sensing volume
form the input to the detection beam path, the radiant flux L. The number of
fluorescent molecules in the sensing volume is determined by the fluorochrome
concentration. The sensing volume is defined by the effective support of the PSF
of the excitation beam path: It is the small volume within the specimen, that is
illuminated by the laser during the pixel time.

Due to the quantum nature of light and electric charge, the emission of par-
ticles such as photons or electrons is associated with an uncertainty referred
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to as shot noise. According to this random process, photons are emitted in all
spatial directions. Only a small fraction - the effective fraction - of them are
collected by the microscope objective. Its numerical aperture NA is a measure
for its acceptance cone. An objective with NA = 1.4 will capture about 30%
of all photons. These photons pass the optics. The resulting radiant flux or ra-
diant power E specifies the number of photons per unit time arriving at the
detector where they are integrated over the pixel dwell time dt. The detector
responsivity R ∈ [0, 1] describes its quantum efficiency, i.e. how efficient incident
photons cause photoelectrons to emit from the photocathode as a consequence
of the photoelectric effect. Because of the quantum nature of electric charge,
this process is subject to shot noise ηP . The electric field between photocath-
ode and anode in the PMT accelerates the photoelectrons on their way to the
anode while striking several dynodes where further electrons are emitted due to
secondary emission. In this way, the number of electrons is multiplied and the
accumulation of charge at the anode forms the detected signal which is largely
amplified compared to the weak fluorescence radiant power arriving at the de-
tector. The signal then passes an analog-to-digital converter (ADC), defining
the final dynamic range of the output signal. It is sampled and quantized such
that electronic noise ηE and quantization noise ηD are added to the signal. PMT
gain, ADC offset, ADC gain and possible non-linearities in e.g. the electronics or
nonlinear quantum efficiencies are summarized in the camera transfer function
(CTF)[6]. The resulting noisy pixel intensity is called s.

3 Measurements

The pixel intensity statistics is the only quantity we can actually measure to cor-
roborate our model derived in Section 4 with data. To measure signal-dependence,
spatial-frequency-dependence and distribution of the pixel intensity statistics,
under the assumption that all noise processes in the imaging chain are ergodic,
we have sought specimens with a spatially homogeneous fluorochrome distri-
bution to obtain a homogeneous input to the imaging chain. To this end, we
prepared sodium fluorescein dilution series with known concentrations ranging
from 5μg/ml to 200μg/ml. Sodium fluorescein is a water soluble fluorochrome
that has been proposed for fluorescence calibration [7]. Following [7] we stabi-
lized the pH at 9.5 using borate buffer. Each specimen then yields a homogeneous
fluorochrome distribution with a radiant power depending on the fluorescein con-
centration. At room temperature, from each specimen, we acquired a 16-bit 3D
image stack using a Zeiss LSM710 with the following parameters: Excitation
laser from the Argon line (wavelength of emission maximum: 488nm), lateral
voxel size dx = dy = 24nm, interslice distance dz = 11nm, 63× oil-immersion
objective with numerical aperture NA = 1.4, pixel dwell time dt = 1.58μs,
pinhole diameter 49μm, PMT gain 911, ADC gain Kd = 1, ADC offset K0 = 0.

To investigate whether the pixel intensity variance is signal-dependent, we
measured sample variance and sample mean slicewise (Fig. 3a) over 1.8 · 108
samples from concentrations which spanned a range from 20 to 200μg/ml at
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Fig. 3. Fluorescence signal: (a) signal-dependence of variance and (b) kernel density
estimate of pixel intensity distribution. Background signal: (c) kernel density estimate
of intensity distribution. Note that the gaps in plot (a) are due to a limited number of
fluorescein concentrations used for the analysis.

20μg/ml increments and from 5μg/ml and 10μg/ml. Note that the slope is not
equal to one as would be the case for samples of a Poisson distribution where
the variance equals the expected value.

As estimate of the intensity distribution, for each fluorescein image, we com-
puted a kernel density estimate from the pixel intensities. We used the Epanech-
nikov kernel with a width of 10. Fig. 3b shows a kernel density estimate of 2 ·106
samples drawn from a 3D image of a 180μg/ml-concentration specimen and
Fig. 3c a density estimate from 8 · 105 samples of a 3D image acquired without
a specimen to measure the electronic noise.

We have estimated the 3D noise power spectrum (NPS) by periodogram aver-
aging (Bartlett method). Fig. 4 shows the results of averaging over 700 xy- and
xz-slices of size 100× 100 respectively.
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Fig. 4. NPS estimates in x, y and z: White spectrum in fy and fz and a slight increase
in low spatial frequencies in fx due to linewise scanning. (The sharp negative peak at
f = 0 is due to subtraction of the sample mean prior to periodogram averaging.).

We can draw the following conclusions: As expected, the electronic noise ηE
can be modeled as additive Gaussian noise and is of negligible amplitude. Quan-
tization noise ηD may be neglected as it exhibits an amplitude smaller than
half a quantization level. Obviously, the dominating noise sources are the flu-
orescence noise ηL and/or the PMT noise ηP . This conclusion is confirmed by
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the measurement of the signal-dependence which indicates by its slope that the
noise samples have largely been amplified. The 3D NPS further indicates that
the power of ηP must be superior to that of the fraction of ηL that arrives at
the detector: White noise ηL passing through optics becomes colored noise with
an NPS shaped by the squared magnitude of the Fourier transform of the PSF.
As the measured NPS is not colored, the power of ηP must be larger.

4 Model

The random fluorescence signal is the input to the imaging system. In the case of
weak signals, the law of rare events holds and the uncertainty of the fluorescence
photon emission can be modeled by a Poisson distribution describing the prob-
ability to find k successes (i.e. photon emissions) in a given time interval. Let
XL be a discrete random variable, XL ∼ P(L) with probability mass function

(pmf) PXL(k) =
Lke−L

k! , k ∈ N, L ∈ R
>0. Recall that for a Poisson distribution,

the variance equals the expected value: V ar(XL) = L. Hence, to model this as
additive noise, we rewrite ηL = k − L as depicted in Fig. 2.

In the following, we describe step by step how the random fluorescence signal
is transferred through each of the blocks in the diagram Fig. 2 and where it is
corrupted by noise.

1) NA: From k emitted photons, only a small fraction l are collected by the
microscope objective: The random variates k become new random variates l =
f1(k) of the discrete random variable XNA, according to f1(x) = a1x, a1 ∈ [0, 1].
V ar(XNA) = a21V ar(Xf ).

2) PSF: The l collected photons are then filtered by the PSF which corresponds
to a convolution of the effective fraction of the spatial fluorochrome distribution
with the PSF h(x) of the microscope, x = (x, y, z)T being the spatial coordi-
nates. Estimating the PSF using the fluorescein images in a similar fashion as
in [8] is not possible because of the PMT noise ηP . We thus base our modeling
upon a PSF description by a linear shift-invariant (LSI) lowpass. As an exam-
ple, the 3D anisotropic Gaussian approximation [9] leads to Gaussian parame-
ters σx = σy = 78.5nm and σz = 294nm for the paraxial model given our
imaging parameters. Calculating how the pmf changes due to transfer of the ran-
dom variates through an LSI-system is a nontrivial task. We approximate this
by considering how the linear and quadratic mean change: The linear mean be-
comes E(XE) = H(0)E(XNA), H(f) being the Fourier transform of h(x) and
f = (fx, fy, fz)

T being the spatial frequencies. The variance of zero-mean white
noise after filtering is V ar(XE) = V ar(XNA)

∑
i h

2(i). In consequence, for an LSI-
lowpass PSF model, the mean remains unchanged by filtering and the variance
is highly reduced. Hence, we approximate the pmf after filtering by a mapping
of the input pmf that leaves the mean unchanged while decreasing the variance.
This yields new variates m = f2(l) with f2(x) = a2(x − E(XNA)) + E(XNA),
a22 =

∑
i h

2(i).
3) R: The detector responsivity R leads to new random variates n = f3(m) of

the random variable XR, f3(x) = a3x, a3 ∈ [0, 1] and V ar(XR) = a23V ar(XE).
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To summarize the mappings above, n = f(k) according to f(x) = y =

a2a3(a1x− E(XNA) +
E(XNA)

a2
). The variance has become

V ar(XR) = a23
∑

i

h2(i)a21L = a21a
2
2a

2
3L = cL (1)

and c � 1 because a1, describing the acceptance cone of the optics, is very
small and a22 � 1 for the Gaussian PSF model introduced above. Hence, even
for ideal detector responsivity R = 1, c � 1 and V ar(XR) becomes negligible
as L decreases or rather is in the low signal range. Note that this assessment is
in accordance with our NPS measurement Fig. 4. The conclusion we can draw
is that Q can be approximated as deterministic signal Q = a1a3L.

4) PMT: The PMT shot noise can be modeled by a Poisson distribution:

XQ ∼ P(Q) according to the pmf PXQ(kq) =
Qkq e−Q

kq !
.

5) CTF: The CTF accounts for the signal amplification in the PMT, the
rescaling in the ADC, the ADC offset, dark current and possible non-linearities in
the imaging chain. We model it using a gamma curve to obtain a simple model of
possible non-linearities which still contains a linear transform as special case. The
random variates kq are transformed into new samples ks = fCTF (kq) according

to y = fCTF (x) = α+β xγ , α ≥ 0. The substitution f−1
CTF (y) = ϕ(y) =

(
y−α
β

)1/γ

with the continuously differentiable function ϕ(y) gives the new pmf

PXs(ks) =
dϕ

dy
PXQ(kq) =

Q

(
ks−α

β

)1/γ

e−Q

((
ks−α

β

)1/γ
)
!

1

γβ

((ks − α

β

) 1
γ −1

)
. (2)

As ηE and ηD are negligible, the noisy signal s = ks and the pixel intensity
statistics follow PXs(ks).

To fit this model to our data, we used the Stirling approximation for factorial
computation. Fig. 5 shows the estimated CTF with the parameters α = 58.5,
β = 3028 and γ = 1.08 as fitting result. Fig. 5 shows two example distributions
illustrating that our model provides a very accurate description of the data.
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Fig. 5. Model fit. Left: Estimated CTF showing that the imaging system exhibits a
slight non-linearity. A linear mapping is shown for comparison. Center and Right: The
proposed model is plotted over the kernel density estimate. The Calapez model fit [4]
and the Jin model fit [5] are shown for comparison.
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The Calapez model [4] and the Jin model [5] are shown for comparison. The
mean absolute fitting error (MAE) over 2 · 106 samples confirms this result. The
MAE of the proposed model is 8.04 · 10−7 while the MAE of the Calapez model
is 1.23 ·10−6 and that of Jin model fit is 1.96 ·10−6. Note that as ηE is negligible,
the Jin model fit corresponds to the fit of our model for γ = 1 which equals a fit
of the standard model of a linearly-scaled Poisson.

5 Summary and Conclusions

In the present work, we have a proposed a novel model for signal and noise
transfer in CLSM. We have acquired homogeneous exposures from sodium fluo-
rescein dilution series. These images served as basis for a rigorous analysis of the
pixel intensity statistics via assessment of their distribution, signal-dependence
and spatial frequency-dependence. These measurements illuminated the under-
standing of the imaging process and substantiate our new model which gives a
description of the pixel intensity statistics derived from a Poisson process whose
variates are mapped to the pixel intensity via the camera transfer function ac-
counting for possible non-linearities in the system. It enables simulation of the
CLSM image formation so that CLSM image analysis algorithms can quantita-
tively be evaluated. After inverse CTF, established Poisson denoising methods
can be applied. Finally it forms the basis for a reconstruction of the input fluo-
rescence signal. As the model fit is performed with data acquired from sodium
fluorescein concentration series, the procedure can easily be repeated to deter-
mine the model parameters for other microscopes.
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